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SUMMARY 
In Sezgin'. the problems considered are the magnetohydrodynamic (MHD) flows in an electrodynamically 
conducting infinite channel and in a rectangular duct respectively, in the presence of an applied magnetic 
field. In the present paper we extend the solution procedure of these papers to two rectangular channels 
connected by a barrier which is partially conductor and partially insulator. The problem has been reduced to 
the solution of a pair of dual series equations and then to the solution of a Fredholm's integral equation of 
the second kind. The infinite series obtained were transformed to finite integrals containing Bessel functions 
of the second kind to avoid the computations of slowly converging infinite series and infinite integrals with 
oscillating integrands. The results obtained compared well with those of Butsenieks and Shcherbinin3 which 
were obtained for the perfectly conducting barrier separating the flows. 
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INTRODUCTION 

We consider the steady laminar flow of an incompressible, viscous, electrically conducting fluid in 
connected rectangular ducts where the geometry is as shown in Figure 1. The axis of the ducts is 
chosen as the z-axis. A uniform magnetic field of strength H, is directed along the axis of x .  The 
walls parallel to the magnetic field are insulated and the wails perpendicular to the magnetic field 
at  x = a, and x = - a 2  are also insulated, but the wall (barrier) perpendicular to the magnetic field 
at x = O  is partly conductor and partly insulator (conducting for a length I from the origin 
symmetrically). The first flow I is separated from the second flow I1 by this thin partition. 

In this arrangement the fluid in channel I is driven by a pressure gradient Ap,, which is 
produced by a pump, and the transfer of hydraulic energy to channel 11, which is connected to 
some hydraulic load, is done electrodynamically, since part of the current induced by flow I, 
through the conducting partition, forms a closed current loop which passes into channel I1 and 
which, by interacting with the transverse magnetic field, generates a force in the direction of the 
positive z-axis (in the direction of flow I). Also the flow I1 is subject to a pressure gradient Ap2 
which depends on the hydraulic load of channel 11. 

The system of equations for uniform flows in channels I and 11, namely the z-components of the 
momentum equation and the curl of Ohm's law (for identical fluids of density p ,  coefficient of 
viscosity p, magnetic permeability p e  and electrical conductivity o), can be written as4 
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Figure 1. The geometry of the problem 

pv2 v2 + p e ~ o a ~ 2 / a x  = ap2/aZ, 

V V ~ H ,  + H0a v2/ax = 0, 

(3) 

(4) 
where the subscripts 1 and 2 refer to the dimensional quantities in the direction of the z-axis in 
channels I and I1 respectively and q = ( o p C ) - l .  The non-dimensionalization is performed with a 
characteristic length (the width of the right channel a,) and reference values for the velocities in 
both channels ( Vo,,,= -af(aP,,,/az)/p). So the equations for the velocities V,(x, y ) ,  V2(x, y )  and 
the induced magnetic fields B,(x ,  y),  B2(x,  y )  for channels I and I1 respectively are (using the 
notations V, B for V,, B, and V, B for V2, B2 after non-dimensionalization) 

v2 v+ MaBIax = - 1, ( 5 )  

V ~ B  + Ma viax = 0, (6 ) 
v2 P+ Maniax = k ,  (7) 

v2B+Mar/ax=o,  (8) 
where 

and M is the Hartmann number. The parameter k is actually positive, since the pressure gradient 
produced in channel I1 is in the direction of the fluid motion, while in channel I the direction of 
the pressure gradient is opposite to the flow direction. 

The boundary conditions for systems (5H8) are the following. The velocity everywhere at the 
solid walls is zero; the induced magnetic field is zero everywhere at the non-conducting walls and 
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continuous on the conducting partition separating the flows: 

V(O,y)= V(l,y)=O; -b/2<y<b/2, 

V(X,  -b/2)=V(x, b/2)=0; O < X < ~ ,  

P(0, y)= P(-cr2, y)=O; -b/2<y<b/2, ci2=u2/a1, 

F(x, b/2)=P(x, -b/2)=Q -a,<x<O, b=b/U,, 

B(1, y)=Q -b/2<y<b/2, 

B ( - u ~ ,  y)=Q -b/2<y<b/2, 

B(x, -b/2)=B(x, b/2)=0; O < X < ~ ,  

B(x, -b/2)=B(x, b/2)=Q -ci2<x<0, 

B(O,y)=Q y <  - 1  and y > l ,  

B(O,y)=O; y <  -1 and y > l ,  

B(0, y)=B(O, y); - 1 < y  < 1, 

dB/dx(O, y)=dB(O, y)/dx; - 1 < y < 1. 

In view of the symmetry about the line y = 0, we need to consider the solution only in the region 

Now the partial differential equations (5H8) with the boundary conditions (10) will be solved 
- ~ 1 2  < x < 1 n0 < y < b/2. 

for V, P and B, B. 

METHOD OF SOLUTION 

The solution method is similar to the solution method of the MHD flow in a rectangular duct 
problem.2 We split the solution into two parts: 

(;) = (2) + (2 )  (;) = (2) + g). 
The solution with the subscript 0 corresponds to the flow in the ducts in which all the walls are 
insulated (primary flow). The solution with subscript 1 corresponds to the contribution when the 
mixed boundary condition on the separating wall is taken into account (secondary flow). Thus we 
have the following sets of differential equations along with the respective boundary conditions for 
the two flows: 

V2Vo + MdB0/dx = - 1, 

V2Bo + MdVO/dx = 0, 
(12) 

(13) 

vo = 0, Bo=O; x = O ,  X =  1, -b/2<y<b/2, (14a) 
vo = 0, Bo=Q y=+b/2, O < x b l ,  

v2v0 + MaBo/ax = k ,  
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and 

V2 Vl + MaB,/dx = 0, 

V ~ B ,  +MaK/ax = 0, 

v, =o, B,=O; y=+b/2, OQx<l ,  

V,=O; x=O, x = l ,  -b/2<y<b/2, 

B,=O; x=! ,  -b/2<yQb/2, 

v2 P, + MaB, /ax = 0, 

V ~ B ,  + Ma v,/ax = 0, 

v1 =0, Bl=O; y =  kb/2, -u2<x<O, 

pl=O; x= -a2,x=0, -bj2<y<b/2, 

B,=O; x= -a2 ,  -b/2<y<b/2 
- 

and on the separating wall 

The solutions for the primary flow and the secondary flow in the right duct (by taking a, = 1) 
are given as 
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where ( y 2  mLF2)112 
pm= --+- , 

sh(x) and ch(x) are sine and cosine hyperbolic functions respectively and the A, are the unknown 
constants. 

Similarly, by using the Fourier series expansion method, the solutions to the primary and 
secondary flows in the left duct are given by 

where the Am are the unknown constants. 

the problem may be reduced to the solutions of the following pair of dual series equations: 
Substituting for B,(x, y), B,(x, y), Bo(x, y) and Bl(x, y) in the mixed boundary conditions (24), 

‘f A , c o s ( ~ ) = O ;  l<y<b/2, 
m = 1 , 3  

(33) 

sh(Ma2/2) sh(M/2) M 
= $sin&)(-p,,,k sh( ~rna2) 

m = 1 , 3 m  n: 

where cth(x) is the cotangent hyperbolic function. 
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Equation (34) shows that 
m 

m = 1 , 3  

for O Q y < l  and equations (33), (35) also give 

for I<y < b/2. Therefore A,= 1,. So the pair of dual series equations (33H36) is reduced to (after 
integrating (36) with respect to y) 

Pm $ 4,,-[cthp,+cth(p,a2)]sin 
m = 1 , 3  m 

SOLUTION OF DUAL SERIES EQUATIONS 

As in Sezgin' we take the representation for A,,, as 

where J ,  is the Bessel function of the first kind and zero order and the function f ( t )  is to be 
determined. 

The first series equation (37) is automatically satisfied by virtue of the identity5 

m H(t-x) . x+t<n:  2(t2 - x2) 1 /2 ' C J,(mt)cos(mx) = 
m = 1 , 3  

and with the help of the identity 
H(x - t )  Io(st)sh(sx) 

ds; x+t<n:  
ens+ 1 

2 Jo(mt)sin(rnx) = 
m = 1 , 3  

the second series equation (38) is reduced to an Abel's integral equation 

where 

O0 sin(mn/2) A4 sh(M/2) M 
+-k 

m4 (-- 2 P m p  shp, 2 
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Here I , ,  K O  and I , ,  K ,  are modified Bessel functions of the first and second kind of order zero 

The solution of Abel’s integral equation (42) is given by 
and one respectively and H(x) is the Heaviside function. 

2 d Y A Y )  f ( t ) =  -- 
n dt j o ( t 2  -y2)l12 dy (44) 

and by substitution of p(y), making use of some well known identities,’ it is reduced to a 
Fredholm’s integral equation of the second kind for f(t): 

1 

f ( t )  + j W ,  t)f(x)dx = g@); 0 d t < I ,  (45) 
0 

where the kernel K(x, t )  is 

do( nsx/b)Io( nst/b) 
1 +ens x J o ( y y o r $ )  + 2 j  0 

and 

The analytical solution of Fredholm’s integral equation (45) with the kernel (46) and free term 
(47) is not obtainable. Because of the infinite series and infinite integrals in the kernel and the free 
term, numerical difficulties arise, especially for the slowly convergent infinite series for large 
Hartmann number M .  Hence we will look further into these quantities as regards their 
computability. 

For large M cthp, = 1 and cth(p,az)z 1, and so the kernel can be written as 

~ ( x , t ) = F {  2 [(m’+-- M2b2)’I’ -m ] J o  c) - J o  (m;t) __ 

m = 1 , 3  4 n  

With the help of the identity in Sezgin’ (Appendix I, equation (49)), the kernel (48) takes the form 

K(x, t)=tl:[ ( s ’ + ~ )  M 2  1/2 -s]Jo(~x)J0(~t)ds 
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The first infinite integral in the kernel (53) is transformed to a finite integral by using the 
identity6 

Jo[a(t2 +x’ -2txc0~8)“’]d8 

and equation (54) in Appendix I1 of Sezgin.’ Finally the Fredholm’s integral equation (50) will be 
solved with the kernel 

and 

where 

r = i(p2 + t 2  - 2pt cose)1/2 (56)  

and the free term h(p) in (53) is modified by using the identity (Sezgin,’ Appendix 111, 
equation (60)) 

J0(mt)sin(m7c/2) 7c 

m = 1 , 3  2 m3 32 
= -(7? - 2t’); t < 5712, x + t < 71. 

Now the analytical formulation of the problem is complete and we are left with the numerical 
computations to obtain the unknown function 8( p). For this purpose the Fredholm’s integral 
equation is reduced to a system of equations for 8 with the help of the Gauss-Legendre 
quadrature formula. By solving this system of equations for 8, one can find f on making use of 
(51), which in turn leads to the determination of Vl(x, y), B,(x, y), Vl(x, y )  and Bl(x ,  y). 

By virtue of equation (39) for A,, the values of the function f can be substituted back in 
equations (27), (28), (31) and (32) to give 

(57) 

( 5 8 )  

V l ( X ,  Y) = 2sh(Mx/2)u(x, Y), 

Bib, Y) = - 2ch(Mx/2)u(x, Y), 
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where 

Since the terms sh[p,(x - l)]/shp, and sh[p,(x +a,)]/sh(p,a,) can be 

(62) 

approximated by 
and e- Pm(2 -x )  - e- P m X  

following series: 
- ~ ~ ( 2 ~ 2  -x’) - - pmx‘ (0<x’<u2) respectively for large M, we need the 

f e -kpm J, ( F) cos (y ), where k > 0. 

The equivalence of this series has been obtained by using contour integration (Sezgin,’ 

m = 1 , 3  

Appendix IV) as 

Both of these infinite integrals can be transformed to finite integrals containing modified Bessel 
functions only (Appendix V and VI of Sezgin’) by taking k = 2 - x, k = x for Vl(x, y )  and B l ( x ,  y )  
and k = 2c(, - x’, k = x’ for Vl(x, y )  and Bl(x, y )  back in equations (61), (62) and (57)-(60), where 
O<x’<u,. Now the secondary flows V,(x, y) ,  Bl(x, y) ,  Vl(x, y )  and Bl(x, y )  can be written as 

Bl(x, - y ) =  - F c h ( F ) h ( x ’ ,  y ) ;  1 
21r 

where ,J 

K1 { ( M / ~ ) [ ( ~ c o s ~  +y)’ +x’]~”} +xK1 { ( M / ~ ) [ ( ~ c o s ~  + b -  y)’ +x’]’’’} 
- X  

[(tcosQ + y)’ + x’]”’ [(tcose + b - y)’ + x’] 11’ 

K ,  { ( M / ~ ) [ ( ~ C O S ~ +  b -y)’ +(2-x)’11’’} 
-(2-x) 

[(tcos0 + b - y)’ + (2 - x)’]’’’ 
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K , ((M/2)[(tcosf3 + y)’ + x”] K ,  ((M/2)[(tcos8 + b - y)’ + x’~] ’ ,~}  
- X‘ + XI 

[( t cos 8 + y)’ + x”] 1’2 [(tcose+b-y)2+X’211/2 

The term b -y in the third and fourth integrals comes from the approximation of ch(ys)/(e*s+ 1 )  

By adding Vo(x, y), Bo(x,y) from equations (25), (26) to V,(x,y), B,(x,y) obtained above, 
respectively, one can find the velocity V(x, y) and the induced magnetic field B(x, y) for the right 
channel. Similarly by adding V,(x, y), B,(x, y) from equations (29), (30) to Vl(x, y), B,(x, y) 
obtained above, respectively, the velocity V(x, y) and the induced magnetic field B(x, y) in the left 
channel will be found. 

by +e - ( b  - s)~, 

RESULTS AND DISCUSSION 

The condition B(0, y )  = B(0, y), 0 6 y 6 1, will imply B,(O, y) = B,(O, y), 0 d y d I ,  since B ,  = Bo = 0 
on the x = 0 wall. From equations (58),  (60) and (61), (62) 

which is equal to 

Therefore 

By taking t=ychO, 
arcch(l/y) 

B(0, y )  = B(0, y) = ~ [ f(ych8)dO; 0 d y < I .  (73) 

The function f is interpolated at the point ych0 using Gauss-Legendre abscissae in Lagrange 
interpolation. For y = 0 we have 

n o  

The magnetic field was computed from equations (73) and (74) on the conducting part of the 

The Fredholm’s integral equation (50) was reduced to a system of linear algebraic equations by 
separating wall. For the integrals 24-point Gauss-Legendre integration was used. 
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discretizing the integral using the Gauss-Legendre quadrature formula; 24 points were used in 
the integration to obtain the desired accuracy. The finite integrals (0 to n) in the kernel and in V ,  , 
B ,  , PI, B ,  were evaluated with 24-point Gauss-Legendre integration. The infinite series in the 
free term h ( p )  in (55) was summed till a relative accuracy of 1 in lo5 was achieved. The infinite 
integral from M/2 to co in the kernel (54) was first transformed to the form (by taking s = M/2u) 

M 2  1 Io(lpM/2u)Zo(ltM/2u) du. 
-Tjo7 1 +ebM/Zu 

The first integral was extended to [ - 1, 11 and then Gauss-Chebychev quadrature was used; 
the second integral was evaluated using Gauss-Legendre integration. 

Each channel was divided into 441 mesh points by taking the step size h=0.05(crz = 1, b= 1). In 
order to reduce the computational work, use was made of the symmetry about y=O. The velocity 
fields V ( x ,  y), P(x, y) and the induced magnetic fields B(x,  y), B(x, y) were calculated in their 
corresponding channels. For the entire computations double-precision arithmetic was used to 
ensure the accuracy of the results. However, the solution of the system of linear algebraic 
equations was in single precision at the time of the computations. This matrix solver is LEQT2F 
in the IMSL library, which performs Gaussian elimination with partial pivoting and iterative 
improvement. 

Equal-velocity and equal-magnetic-field lines have been drawn for 10 < M < 100 and for several 
values of k( = -(8’,/dz)/(aP1/dz)) and 1 (length of the conducting part of the partition). An 
increase in M leads to the formation of boundary layers near the non-conducting boundaries as in 
the one-channel (rectangular duct) problem.2 However, when k < 1 the electromagnetic effects are 
more dominant in channel 11. This can be verified by looking at the pattern of velocity contours in 
Figures 2 and 4. In Figure 2 the lines are visibly affected by the magnetic field in channel I1 as 
compared with channel I. In Figure 4 the pressure gradient in channel I1 is insufficient to suppress 
the effects of the magnetic field in channel 11, but the pattern is maintained somewhat in channel I 

- 1.0 -.8 -.6 -.4 -. 2 0 .2 . 4  .6 .8  I .o 

Figure 2. Velocity lines for M =  10, k = 0 . 5 ,  1=025 
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Figure 3. Magnetic field lines for M = 10, k = 0.5, 1 = 0.25 
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Figure 4. Velocity lines for M = 100, k = 0.5, 1 =0.25 

because of a larger value of the pressure gradient. For larger values of M electromagnetic effects 
predominate over the effects of pressure gradient in both channels, as can be seen in Figures 4 and 
10 for M = 100 and M = 50 respectively. Also we note that an increase in M gives rise to reversal of 
the flow direction in channel I1 in the region adjoining the conducting part. This result is similar 
to that derived by Butsenieks and Sh~herbinin.~ 

The effect of varying M on current lines (equal-magnetic-field lines) has been depicted in 
Figures 3, 5 and 11. The current induced in channel I is partially closed (negative lines), and the 
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Figure 6. Velocity lines for M=50, k = l ,  1=0.25 

rest of the current is connected to the fluid in channel I1 through the conducting partition. Also 
the pattern of current lines is similar to that for a rectangular duct.2 

Next we consider various values of k for M = 50 and 1 =0.25 in Figures 6-8. For k = 1 the 
negative velocities in channel I1 are equal in magnitude to the positive velocities in channel I 
(Figure 6) .  We note that when the counter pressure in the second channel (k)  is reduced by a ratio 
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Figure 7. Magnetic field lines for M=50,  k = l ,  1=0.25 

-I 0 -8 -6 -.4 -.2 0 2 .4 .6 .8 1.0 

Figure 8. Velocity lines for M = 50, k = 0.1, 1 = 0.25 

of 1 : 10, there is almost complete reversal of the flow in channel I1 (Figures 6 and 8), the flow in 
channel I being affected only marginally. But in channel I1 the flow in the opposite direction is 
confined to a very narrow region near the non-conducting part of the partition. It is also noted 
that in channel I1 the velocity is lower than in the core. 

A similar contrast can be seen from Figures 7 and 9 in the pattern of current lines when k is 
varied. It may be noted from Figure 7 that there is no region in channel I1 in which the current 
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Figure 9. Magnetic field lines for M=50, k=0.1, 1=0.25 

-1.0 -.8 76 -.4 -.2 0 .2 .4 .6 .8  1.0 

Figure 10. Velocity lines for M = 50, k=0.5, 1=0.15 

lines characterized by negative values of B seem to exist. It may also be noted that a similar 
conclusion was arrived at by Butsenieks and Sh~herbinin.~ We further notice that the point where 
maximum B occurs tends to move in the first channel as the ratio of the pressure gradients is 
varied. 

The comparison of equal-velocity lines and current lines for several values of 1 but for given 
M=50,  k = 0 . 5  is presented in Figures 10-13, which are equal-velocity lines for 1=015 and 
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Figure 1 1 .  Magnetic field lines for M=50, k=0.5 ,  1=0.15 

Figure 12. Velocity lines for M=50, k=0-5.  [=0.35 
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Figure 13. Magnetic field lines for M = 5 0 ,  k = 0 . 5 ,  1=0.35 

0.35 respectively. The pattern of velocity and current lines with varying 1 is similar to that 
for a rectangular duct.’ 

The behaviours of the equal-velocity lines and the current lines are in very good agreement 
with Butsenieks and Shcherbinin’~~ results, which are obtained for the special case I = b/2 in their 
paper (partition was conducting). 

Table I 

Hartmann 
number 

M 1 k Q1 Q 2  

50 0.25 0.90 0.004 1 -0.00330 
50 0.25 0.80 0.0043 - 000270 
50 0.25 0.50 0.0049 -0~oOo94 
50 0 2 5  0.35 0.0052 -0~00005 
50 0.25 0.30 0.0053 - 0.00025 
50 0.25 0.10 0.0057 -0.00143 

50 0.15 0.50 0.0062 - 0.00220 
50 0.25 0.50 0.0049 - 0.00094 
50 0.35 0.50 0.0039 0~00011 

10 0.25 0.50 0.0203 - 0.00800 
20 0.25 0.50 0.01 1 5 - 0-00340 
50 0.25 0.50 0.0049 -0.00094 

100 0.25 0.50 0.0026 0~00110 
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In Table I we present the integrated flow rates in both channels calculated from the equations 

for t12 = 1, which are obtained from equations (25),  (27) .  
The integrated flow rate Q 2  in channel I1 becomes zero for some k in 0.3 < k <0.35. 
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